Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of Digital Repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "AFAN Mohamed"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Advanced Machine Learning for Heart Disease Prediction A Comparative Study of Ensemble and Traditional
    (University of Msila, 2025-06-30) BELAADA Wahid Akram; AFAN Mohamed
    Heart disease, a leading global cause of mortality, demands innovative early detection strategies. This study evaluates machine learning models (DNN, KNN, SVM, XGBoost, Random Forest) for predicting cardiovascular disease using 1,000 patient records with 16 clinical features. After rigorous preprocessing and validation, ensemble methods like XGBoost (100% accuracy) and Random Forest (99%) outperformed traditional models, highlighting their clinical potential. Challenges such as overfitting and interpretability were addressed, emphasizing the need for diverse datasets and explainable AI (XAI). Future integration with wearable technologies and interdisciplinary collaboration could enable proactive, personalized care, transforming cardiovascular health outcomes globally.

All Rights Reserved - University of M'Sila - UMB Electronic Portal © 2024

  • Cookie settings
  • Privacy policy
  • Terms of Use