Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of Digital Repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Christian A., Gueymard"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Multimodel ensemble approach for hourly global solar irradiation forecasting
    (Université de M'sila, 2019) Nahed, Zemouri; Hassen, Bouzgou; Christian A., Gueymard
    This contribution proposes a novel solar time series forecasting approach based on multimodel statistical ensembles to predict global horizontal irradiance (GHI) in short-term horizons (up to 1 hour ahead). The goal of the proposed methodology is to exploit the diversity of a set of dissimilar predictors with the purpose of increasing the accuracy of the forecasting process. The performance of a specific multimodel ensemble forecast showing an improved forecast skill is demonstrated and compared to a variety of individual single models. The proposed system can be applied in two distinct ways. The first one incorporates the forecasts acquired from the different forecasting models constituting the ensemble via a linear combination (combination-based). The other one consists of a novel methodology that delivers as output the forecast provided by the specific model (involved in the ensemble) that delivers the maximum precision in the zone of the variable space connected with the considered GHI time series (selection-based approach). This forecasting model is issued from an appropriate division of the variable space. The efficiency of the proposed methodology has been evaluated using high-quality measurements carried out at 1min intervals at four radiometric sites representing widely different radiative climates (Arid, Temperate, Tropical, and High Albedo). The obtained results emphasize that, at all sites, the proposed multi-model ensemble is able to increase the accuracy of the forecasting process using the different combination approaches, with a significant performance improvement when using the classification strategy.

All Rights Reserved - University of M'Sila - UMB Electronic Portal © 2024

  • Cookie settings
  • Privacy policy
  • Terms of Use