Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of Digital Repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Douadi Mihoubi"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    CLASSIFICATION OF ELEMENTS IN ELLIPTIC CURVE OVER THE RING F
    (Université de M'sila, 2022) Bilel Selikh; Douadi Mihoubi
    Let Fq["] := Fq[X]/(X4 − X3) be a finite quotient ring where "4 = "3, with Fq is a finite field of order q such that q is a power of a prime number p greater than or equal to 5. In this work, we will study the elliptic curve over Fq["], "4 = "3 of characteristic p 6= 2, 3 given by homogeneous Weierstrass equation of the form Y 2Z = X3 + aXZ2 + bZ3 where a and b are parameters taken in Fq["]. Firstly, we study the arithmetic operation of this ring. In addition, we define the elliptic curve Ea,b(Fq["]) and we will show that E 0(a), 0(b)(Fq) and E 1(a), 1(b)(Fq) are two elliptic curves over the finite field Fq, such that 0 is a canonical projection and 1 is a sum projection of coordinate of element in Fq["]. Precisely, we give a classification of elements in elliptic curve over the finite ring Fq["].
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Minimal and maximal cyclic codes of length 2p
    (2022) Lakhdar Heboub; Douadi Mihoubi
    In this paper, we compute the maximal and minimal codes of length 2p over finite fields q  with p and q are distinct odd primes and f( )= 1 p p − is the multiplicative order of q modulo 2p. We show that, every cyclic code is a direct sum of minimal cyclic codes

All Rights Reserved - University of M'Sila - UMB Electronic Portal © 2024

  • Cookie settings
  • Privacy policy
  • Terms of Use