Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of Digital Repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "GARECHE, Sarra"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A critical point theorem for perturbed functionals and localization of critical point in bounded convex
    (University of M'sila, 2023-06-10) GARECHE, Sarra; Supervisor: Mokhtari, Abdelhak
    In this work, we have studied a new critical point theorem in the following two cases: In the first case, we have established a new critical point theorem for a class of perturbed functionals without satisfying the Palais-Smale condition, which asserts the existence of critical point of functionals of the type I = I1 + I2, provided that I1 has at least one critical point. The main abstract result is applied to the following nonhomogeneous Problem: ( −div(|∇u|p−2 .∇uu) = = 0|u|q−2 u + λg(x, u) on in ΩΓ,. Where λ ∈ R, Ω is a bounded set of RNwith smooth boundary Γ, 1 < q < p with p > N and g(·, ·) is continuous on Ω¯ × [0, ∞). The last case, we have established the localization of a critical point of minimum type of a smooth functional is obtained in a bounded convex conical set defined by a norm and a concave upper semicontinuous functional. Our abstract result is applied to the following Periodic Problem: ( −u′′(ut) + (0) −a2uu((Tt) = ) =fu(′u(0) (t)) − uon ′(T(0 ) = 0 , T),. Where a ̸= 0 and f : R → R is a continuous function with f(R+) ⊂ R+.

All Rights Reserved - University of M'Sila - UMB Electronic Portal © 2024

  • Cookie settings
  • Privacy policy
  • Terms of Use