Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of Digital Repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Moustari Mohamed Abderaouf"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Deep learning-based medical data analysis for disease prediction and classification
    (University of M'Sila, 2025-05-06) Moustari Mohamed Abderaouf
    The fundus images of patients with Diabetic Retinopathy (DR) often display nu- merous lesions scattered across the retina. Current methods typically utilize the entire image for network learning, which has limitations since DR abnormalities are usually localized. Training Convolutional Neural Networks (CNNs) on global images can be challenging due to excessive noise. Therefore, it's crucial to enhance the visibility of important regions and focus the recognition system on them to improve accuracy. This thesis investigates two tasks; the first one is a novel two-branch attention-guided con- volutional neural network (AG-CNN) with initial image preprocessing for DR classi- fication. The AG-CNN initially establishes overall attention to the entire image with the global branch and then incorporates a local branch to compensate for any lost dis- criminative cues. The second task is improving diabetic retinopathy classification by combining handcrafted and deep features. We extract LBP, HOG, and GLCM to cap- ture texture patterns and use DenseNet-121 for deep feature extraction. The fusion of these features enables a more comprehensive representation of the retinal images, en- hancing the model’s ability to discriminate between different severity levels of diabetic retinopathy. We conduct extensive experiments using the APTOS 2019 DR dataset for both tasks.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Deep learning-based medical data analysis for disease prediction and classification
    (University of Mohamed Boudiaf - M’sila, 2025-05-25) Moustari Mohamed Abderaouf
    Les imagesdufondd’oeildespatientsatteintsderétinopathiediabétique(RD)présen- tent souventdenombreuseslésionsdisperséessurlarétine.Lesméthodesactuelles utilisent généralementl’imageentièrepourl’apprentissageduréseau,cequiprésente des limitespuisquelesanomaliesdelaRDsontgénéralementlocalisées.Laformation de réseauxneuronauxconvolutionnels(CNN)surdesimagesglobalespeutêtrediffi- cile enraisondubruitexcessif.Parconséquent,ilestcruciald’améliorerlavisibilité des régionsimportantesetdeconcentrerlesystèmedereconnaissancesurellespour améliorer laprécision. Cette thèseétudiedeuxtâches;lapremièreestunnouveauréseauneuronalcon- volutionnelguidéparl’attentionàdeuxbranches(AG-CNN)avecprétraitementinitial de l’imagepourlaclassificationdelaRD.L’AG-CNNétablitd’abordl’attentionglob- ale surl’imageentièreaveclabrancheglobale,puisintègreunebranchelocalepour compenser leséventuelsindicesdiscriminantsperdus. La deuxièmetâcheconsisteàaméliorerlaclassificationdelarétinopathiediabétique en combinantdescaractéristiquesartisanalesetprofondes.NousextrayonsLBP,HOG et GLCMpourcapturerlesmotifsdetextureetutilisonsDenseNet-121pourl’extraction de caractéristiquesprofondes.Lafusiondecescaractéristiquespermetunereprésenta- tion pluscomplètedesimagesrétiniennes,améliorantainsilacapacitédumodèleà distinguer lesdifférentsniveauxdegravitédelarétinopathiediabétique. Nous menonsdesexpériencesapprofondiesenutilisantl’ensemblededonnéesAP- TOS2019DRpourlesdeuxtâches.

All Rights Reserved - University of M'Sila - UMB Electronic Portal © 2024

  • Cookie settings
  • Privacy policy
  • Terms of Use