On spectral continuity of the essential spectrum

dc.contributor.authorDJABRI, Kenza
dc.date.accessioned2020-10-21T13:58:52Z
dc.date.available2020-10-21T13:58:52Z
dc.date.issued2020
dc.description.abstractIn this work, we discussed the spectrum continuity of some parts of the essential spectrum using a specific mode of convergence. more precisely, we investigate the relation between the essential approximate point spectrum of a sequence of bounded linear operators (𝑇𝑛)𝑛∈ℕ on Banach space 𝑋 and the essential approximate point spectrum of a linear operator 𝑇 on X, where (𝑇𝑛)𝑛∈ℕ convergent to T in 𝑣-convergence sense.en_US
dc.identifier.urihttp://dspace.univ-msila.dz:8080//xmlui/handle/123456789/20012
dc.language.isoenen_US
dc.publisherFaculty of Mathematics and computer sciences Department of Mathematics - Option : Mathematical and Numerical Analysisen_US
dc.subjectEssential spectrum, the 𝑣-convergence, spectral continuity.en_US
dc.titleOn spectral continuity of the essential spectrumen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DJABRI Kenza.PDF
Size:
516.1 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections