Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of Digital Repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mohammed Elamin, Amari"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Forecasting Volatility of Cryptocurrencies Using Machine Learning and Deep Learning
    (Mohamed Boudiaf University of M'sila, 2025-06-15) Mohammed Elamin, Amari; Supervisor: Lamri, Sayad
    This thesis investigates the application of machine learning and deep learning methods into forecasting cryptocurrencies volatility. Using Bitcoin and Ethereum datasets, the performance of the following models was analyzed: Random Forest, XGBoost, LSTM, and GRU. The results show that deep learning models, specifically LSTM, outperforms machine learning models on every metric. These findings suggest that RNN models are better equipped to handle temporal dependencies in time series data that have sequential nature.

All Rights Reserved - University of M'Sila - UMB Electronic Portal © 2024

  • Cookie settings
  • Privacy policy
  • Terms of Use