Doctoral Dissertations
Permanent URI for this collection
Browse
Recent Submissions
Item Open Access Exploitation des fibres végétales sur les sites de Boussaâda comme élément de renforcement des matériaux composites(University of M'Sila, 2025-02-27) MEDDAH MostefaThis thesis explores the use of plant fibers as reinforcements for composite materials, an approach driven by the search for sustainable and environmentally friendly solutions. Plant fibers offer several significant advantages, such as low cost, considerable lightness, and a high specific modulus, making them particularly attractive for various industrial applications. Our work specifically focuses on the characterization of two fibers, Malva sylvestris L. and Typha angustifolia, available in the Boussaâda region (Algeria), as potential reinforcements for polymer-based composites. The adopted methodology includes a thorough analysis of the physical, chemical, and mechanical properties of these fibers. It is important to highlight that this is the first time that Malva sylvestris L. fiber has been characterized as a lignocellulosic fiber for reinforcing composite materials or for textile applications. Both types of fibers (Malva sylvestris L. and Typha angustifolia) are used as reinforcement elements for polyester resin-based composites. These composites, obtained by vacuum molding, are analyzed using ATR-FTIR spectroscopy and then characterized by mechanical tests (tensile and three-point bending tests). Their mechanical performance is compared to that of the virgin resin. This comparison highlighted the effect of adding plant fibers on the mechanical behavior of the composites. This work contributes to the development of low environmental impact composite materials, tailored to meet the performance and durability requirements in various industrial sectors.Item Open Access Étude des propriétés thermiques et mécaniques des matériaux de construction(University of M'Sila, 2024-04-10) Chouidira MohamedLe secteur de la construction est un contributeur majeur au réchauffement climatique en raison de sa forte consommation énergétique et de l'épuisement des ressources naturelles. Cette étude vise à améliorer la performance environnementale des bâtiments en analysant les propriétés thermiques et mécaniques des matériaux de construction traditionnels et modernes tels que l'argile, la pierre et la brique. Des tests en laboratoire et sur le terrain ont été réalisés pour évaluer ces matériaux. Les résultats ont permis de classer les matériaux en fonction de leurs performances thermiques et mécaniques. Parallèlement, de nouveaux dispositifs et logiciels ont été développés pour améliorer l'efficacité de l'étude et ont fait l'objet de demandes de brevet. L'étude démontre la possibilité de réduire l'empreinte carbone du secteur de la construction grâce à un choix judicieux des matériaux. Les innovations proposées offrent des solutions concrètes pour construire des bâtiments plus durables et moins énergivores. Cette étude contribue grandement à la transition vers un secteur de la construction plus respectueux de l'environnement. Elle souligne l'importance d'évaluer les matériaux de construction de manière approfondie pour sélectionner ceux qui offrent les meilleures performances thermiques et environnementalesItem Open Access INFLUENCE DES CONDITIONS CLIMATIQUES SUR LA PERFORMANCE DES PANNEAUX PHOTOVOLTAIQUES(University of M'Sila, 2024-10-28) Samir TABETThis thesis presents the impact of technical and environmental factors on the performance of photovoltaic systems. In arid areas, extreme conditions accelerate the deterioration of solar panels, mainly due to dust accumulation, which reduces their efficiency. The study focuses on the effect of this dust accumulation in desert environments, particularly in Bordj Bou Arréridj, Algeria. I-V and P-V analyses, along with numerical simulation, were used to evaluate panel parameters and their degradation due to dust. Weather conditions, such as solar radiation and temperature, also influence panel durability. A new method for identifying damaged panels was developed to estimate the degradation of critical parameters. This study examines the degradation of a polycrystalline silicon photovoltaic panel exposed to outdoor conditions for four years in the arid climate of Biskra, Algeria. To evaluate the performance of the tested PV module, two characterization techniques were used: I-V and P-V characterization, along with visual inspection. Under normal conditions, a new model was developed to determine the five criteria (a, Rs, Rp, I0, and Iph) using curve fitting. This model was adjusted to account for panels with and without degradation. By estimating the degradation of these parameters, a new method for identifying damaged panels was presented.Item Open Access Comportement mécanique de brique de terre « ADOBE » : Effet de la nature de fibres végétales et d’agent stabilisant(University of M'Sila, 2025-05-08) Kouidri DjamilaThis research investigated the potential of fibers from the Bassia indica plant as a bio-sourced reinforcement in lightweight composite materials, particularly for adobe bricks. A comprehensive characterization of the fibers (SEM, XRD, EDX, RTA-FTIR, TGA) revealed a high crystallinity (40.12%), remarkable thermal stability (up to 260.24°C), and promising mechanical properties (tensile strength of 417.50 MPa, Young's modulus of 17.46 GPa). In parallel, an analysis of the intrinsic properties of the soils was conducted. The study explored the synergistic effect of fiber reinforcement and lime stabilization on the mechanical performance of adobe bricks, using compression and flexural tests. The results demonstrated a significant improvement in mechanical strength with the incorporation of fibers and lime, with the optimized formulations exhibiting superior performance. Overall, this research highlights the potential of Bassia indica fibers as a sustainable reinforcement material for ecological construction, promoting the use of local resources and improving the performance of adobe bricksItem Open Access Numerical and Experimental study of a bio composite material reinforced with lignocellulosic fibers(University of M'Sila, 2024-05-11) SAADA KhalissaAfter the signing of the Kyoto Protocol in 1997, attention gradually shifted towards sustainable development and carbon footprint reduction, particularly in research and innovation sectors. Plant fiber-reinforced composite materials emerged as a promising solution to address these environmental challenges while offering improved mechanical performance and increased durability. These materials are considered an eco-friendly alternative to traditional composites, often made from synthetic fibers derived from non-renewable resources. By utilizing fibers from plants such as flax, hemp, jute, and even kenaf, these materials offer significant environmental advantages. They help reduce dependence on other resources and can contribute to reducing greenhouse gas emissions throughout their lifecycle, from production to end-of-life use. This study focuses on the fabrication of silicone molds for creating traction and flexion samples, as well as the construction of honeycomb structures with various geometric patterns, using 3D printing and polylactic acid (PLA) material. The goal is to produce epoxy and polymer bio-composites reinforced with different natural fibers such as date palm, sisal, loofah, and jute. Epoxy samples were manufactured by inserting holes in the middle, and their mechanical behavior was evaluated through traction tests, with numerical verification using Abaqus software. The mechanical properties of natural fiber-reinforced bio-composites were enhanced using artificial neural networks (ANN) and response surface methodology (RSM), demonstrating a linear correlation with experimental results.Item Open Access Study of the machinability and mechanical behavior of a bio composite material reinforced with lignocellulosic fibers(University of M'Sila, 2024-05-09) Riyadh BenyettouThe thesis conducted a comprehensive examination of the physical properties of newly manufactured Date Palm Fiber/ Iso polyester composites (DPFPs) in three different configurations: unidirectional (UD) and cross-linked (C), with layer numbers ranging from 2 to 4. Moreover, it explored the mechanical behavior and the machinability of two recently developed biocomposites: DPFP40 (Date Palm Fiber/ Iso polyester), characterized by a 40% by-weight fiber reinforcement, and PFPEs (palm fiber powder/epoxy) featuring an 18% by-weight fiber reinforcement. The examination of drilling behavior of these bio composites yields crucial insights into specific mechanical properties. This analysis considers factors such as assessing the final surface quality of drilled holes to understand the biocomposite's reaction to cutting forces, as well as investigating the impact of various drilling parameters including spindle speed, feed rate, materials and point angles of drill bits. These investigations aid in optimizing machining conditions to enhance overall mechanical performance of developed biocomposites. The study focused on DPFPs' water absorption behavior across different water types and examined DPFP40 and PFPEs drilling behaviors under various cutting conditions. Three optimization and modeling methods, including Artificial Neural Networks (ANN), Response Surface Methodology (RSM), and the Taguchi approach, were developed for predictive capabilities. A water absorption study revealed a linear correlation between absorption rates and fiber content. DPFP40 drilling analysis indicated optimal parameters for delamination, circularity, and cylindricity errors of drilled holes. ANN and RSM models demonstrated excellent alignment with experimental data. PFPEs drilling characteristics were assessed, highlighting the impact of feed rate, spindle speed, and drill point angle on circularity and cylindricity errors of drilled holes. ANN and Taguchi models accurately predicted experimental results, providing valuable insights for improving the machinability of Natural Fiber Reinforced Composites (NFRCs) in lightweight structural applications across various industries.Item Open Access Study of turbulent flow through a fan(University of M'Sila, 2024-03-06) AMOUR AissaParticle-laden flows are crucial for specific industrial applications but can have undesirable consequences, especially in industries like cement manufacturing that heavily rely on centrifugal fans. Operating under demanding conditions with a notable load of erodent solid particles poses challenges for these fans. Despite their widespread use, erosion in various fan types remains insufficiently explored. This thesis focuses on investigating the erosion process of an induced cement mill fan (FN-280). In pursuit of this objective, Unsteady three-dimensional numerical simulations using the Eulerian- Lagrangian approach were conducted to predict the fan’s aerodynamic characteristics and particle dispersion. Results are compared with experimental data and on-site inspections to assess the simulation’s effectiveness in predicting the fan’s performance and erosion patterns. Additionally, a thesis section examines how altering the number of blades and the blade’s outlet angle affects overall performance and erosion patterns. The numerical fan’s performance curve closely aligns with experimental data, validating the model’s reliability. Findings underscore the model’s ability to accurately replicate actual erosion patterns, emphasizing the substantial influence of particle size, flow conditions, and particle load on patterns and erosion rates. It is shown that increasing the blade outlet angle significantly intensifies erosion on the blade’s pressure side, with the primary factor driving higher erosion rates being the interplay between particle impact angle and frequency. Adjusting the blade count has minimal impact on erosion patterns on the blade pressure side compared to changing the blade outlet angle, but a noticeable trend emerges with fewer blades, resulting in more pronounced erosion rates. This is suggested to be attributed to the higher local impact frequency on blades featuring fewer blades. 1Item Open Access Contribution to the dynamic study of a rotor by finite elements(University of M'Sila, 2024) AIMEUR NoureddineRotor dynamics is an important aspect of the design or analysis of any type of rotating machine, as various types of vibrations appear in this mechanical system when the rotor is turned on, which can limit performance or easily lead to disaster. Therefore, the dynamic analysis of the rotor is necessary to ensure proper operation by providing accurate knowledge of the vibration behavior of the rotor system. In this study, scientific techniques for modeling and simulating the vibrations of a rotating system are presented. The equations of vibration motion of the rotor are determined using the Lagrange energy method. The centrifugal fan installed at the cement factory was selected to be of the FN280 type, equipped with a single wheel with blades mounted on the shaft supported by two bearings. Due to the fact that the manual solution of the equations of motion characterizing the dynamic analysis is considered a difficult task, the dynamic analysis of the cement fan FN280 using the finite element method was performed by the code ANSYS. The various components of the fan are designed using SolidWorks, except for the blade. Due to the lack of design data for it, we resorted to reverse engineering technology, which is also called reverse design. To obtain a 3D model of the blade, we used a CMM machine to scan the blade, and the fan was assembled and a dynamic analysis of the rotor was performed using the ANSYS Workbench. We determined the natural frequencies, extracted the critical speed by means of the Campbell diagram and mode shapes, and also studied the effect of the worn blades on dynamic behavior. In addition, a harmonic response analysis was performed in both cases. FSI simulation was also applied to the fan to estimate the loads resulting from unsteady flow. This simulation process is carried out using the ANSYS Workbench, which integrates flow simulation and transient analysis simulation using a one-way coupling approach. This approach was chosen because there is very weak interaction between the structural domain and the fluid. The purpose of this simulation is to verify the ability to make a preliminary estimate of the fatigue limit and the effect of pressure loads applied to the structure resulting from unsteady flow on the life of the fan. Results showed that air loads have a negligible effect on fan life.Item Open Access Exploitation de l’Energie Solaire à M’Sila(University of M'Sila, 2024-09-29) BOUCHAREB KhaledIn the field of green electricity generation, parabolic trough concentrated solar power technology is acknowledged as one of the most efficient and practicable options. In the first part of this thesis, we studied the viability of building a Concentrating Solar Power plant (CSP) using parabolic trough technology, like the Andasol-1 power plant in southern Spain in the M'Sila region of northern Algeria, through the System Advisor Model (SAM) software. The reference plant has a capacity of 50 MW and contains thermal energy storage (TES) technology. The results showed that when the Andasol-1 plant is installed in M'Sila, it produces electricity all year round from 11h00 a.m. to 17h00, with an average power of between 25 MWe and 50 MWe. When combined, the variables DNI, temperature, and relative humidity account for 98.2 % of the variance in electricity production in M’Sila. The climatic conditions of M’Sila make it favorable to install a CSP plant similar to Andasol-1 since it can produce 177.22 GWh of electricity annually at the M'Sila location. Furthermore, in the second part, the design, analysis and optimization of the performances of a CSP plant based on PTC technology with a capacity of 100 MW equipped with a TES system were carried out, in two sites representatives in Algeria (Tamanrasset and M'Sila). The results of the performance analysis conducted on the optimized design showed that the optimal values of the solar multiple (SM) and full load hours (FLH) of the TES system for the proposed power plant at the M'Sila site are found to be 3 and 7 hours, respectively, with an annual electricity production of 451.84 GWh and a low levelized cost of electricity (LCOE) value of 7.8¢/kWh. The study concluded that the M'Sila site provided encouraging results regarding the deployment of CSP plants integrating PTC technology. M'Sila can reduce demand on its thermal power plant, particularly during summer, by deploying CSP plants with parabolic trough collector technology, which can significantly contribute to the production of clean and sustainable electricity in the long term.Item Open Access Comportement mécanique de brique de terre « ADOBE » : Effet de la nature de fibres végétales et d’agent stabilisant(Université Mohamed Boudiaf - M'sila, 2025-05-25) Kouidri DjamilaCette recherche a étudié le potentiel des fibres de la plante Bassia indica comme renfort biosourcé dans les matériaux composites légers, en particulier pour les briques d'adobe. Une caractérisation complète des fibres (MEB, DRX, EDX, RTA-IRFT, ATG) a révélé une cristallinité élevée (40,12%), une stabilité thermique remarquable (jusqu'à 260,24°C) et des propriétés mécaniques prometteuses (résistance à la traction de 417,50 MPa, module d'Young de 17,46 GPa). En parallèle, une analyse des propriétés intrinsèques des sols a été menée. L'étude a exploré l'effet synergique du renforcement par les fibres et de la stabilisation à la chaux sur les performances mécaniques des briques d'adobe, via des essais de compression et de flexion. Les résultats ont démontré une amélioration significative de la résistance mécanique avec l'incorporation de fibres et de chaux, les formulations optimisées présentant des performances supérieures. Globalement, cette recherche souligne le potentiel des fibres de Bassia indica comme matériau de renforcement durable pour une construction écologique, favorisant l'utilisation des ressources locales et améliorant les performances des briques d'adobe.Item Open Access Study of heat transfer in a photovoltaic (PV) module(University of M'sila, 2025-04-06) Abdelhak Keddouda; ENCA/Pr. Razika IhaddadeneAbstract higher 𝑊𝑠. 𝑇𝑎 also tends to yield linear increase in 𝑇𝑏𝑎𝑐𝑘, expecting 5.8 °𝐶 rise, for 6 °𝐶 increase in 𝑇𝑎 at 700 𝑊/𝑚2 and 1 𝑚/𝑠 of solar radiation and wind speed, respectively. Moreover, a simulation algorithm was proposed and programmed to model and calculate 𝑇𝑝𝑣, were the aforementioned effective parameters was considered as inputs. The findings of this investigation revealed that the proposed simulation algorithm provided one of the best results in comparison to literature models, achieving an 𝑅2 of 0.963 and a 𝑀𝐴𝐸 of 1.883, which is very close to the best overall model by King at 𝑅2=0.973 and 𝑀𝐴𝐸=1.663. Additionally, two new models for 𝑇𝑝𝑣 prediction were proposed. After testing on new data, the explicit model provided a reasonable first approximation attaining an adjusted 𝑅2 of 0.97 and a 𝑀𝑆𝐸 of 3.505, and an accurate implicit model, achieving a 𝑀𝑆𝐸 of only 1.268.Item Open Access Exploitation des fibres végétales sur les sites de Boussaâda comme élément de renforcement des matériaux composites(University of M'sila, 2025-04-06) MEDDAH Mostefa; ENCA/ZAOUI MoussaCette thèse explore l'utilisation des fibres végétales comme renforts pour les matériaux composites, une approche motivée par la recherche de solutions durables et respectueuses de l'environnement. Les fibres végétales présentent plusieurs avantages importants, tels que leur faible coût, leur légèreté appréciable et un module spécifique élevé, ce qui les rend particulièrement attractives pour diverses applications industrielles. Notre travail se concentre spécifiquement sur la caractérisation de deux fibres, Malva sylvestris L. et Typha angustifolia, disponibles dans la région de Boussaâda (Algérie), en tant que renforts potentiels pour des composites polymériques. La méthodologie adoptée inclut une analyse approfondie des propriétés physiques, chimiques et mécaniques de ces fibres. Il est important de souligner que c'est la première fois que la fibre de Malva sylvestris L. est caractérisée en tant que fibre ligno-cellulosique pour le renforcement de matériaux composites ou pour des applications textiles. Les deux types de fibres (Malva sylvestris L. et Typha angustifolia) sont utilisées comme éléments de renforcement pour des composites à base de résine polyester. Ces composites, obtenus par moulage sous vide, sont analysés par spectroscopie infrarouge à transformée de Fourier (ATR-FTIR), puis caractérisés par des tests mécaniques (traction et flexion trois points). Les performances mécaniques des composites sont comparées à celles de la résine vierge. Cette comparaison a permis de mettre en évidence l'effet de l'ajout des fibres végétales sur l'amélioration du comportement mécanique des composites. Ce travail contribue à l'émergence de matériaux composites à faible impact environnemental, adaptés aux exigences de performance et de durabilité dans de nombreux secteurs industriels.Item Open Access Valorisation des types de sable de dune de la région du Hodna pour l’élaboration des bétons polymères à base de déchets plastiques(Université Mohamed Boudiaf - M’sila, 2025-04-06) MEKIDECHE Salih; ENCA/RAHMOUNI Zine El AbidineAu cours de la dernière décennie, de nombreux types de déchets ont été exploités comme matières premières dans différentes industries. Les plastiques recyclés font partie des déchets nécessaires pour de nombreuses applications de génie civil. D'autre part, au sud de la région de Hodna à M'sila, il existe plusieurs carrières de sable de dunes. Cependant, cette énorme richesse n'est pas largement exploitée. Dans ce travail, nous avons tenté à la valorisation des sables de dunes et les déchets plastiques, pour produire de matériaux de construction dans de nombreuses applications de construction. Tout d'abord, plusieurs matériaux tels que (déchets de polypropylène, polypropylène vierge, différents types de sable et déchets minéraux) ont été analysés à l'aide de l'ATR-FTIR, de la XRF ainsi que l’analyse granulométrique. D'autre part, des tests mécaniques et physiques tels que la résistance à la flexion en trois points, la résistance à la compression, l'absorption d'eau et l'observation visuelle ont été appliqués à différents échantillons composites produits. Les résultats ont été examinés et analysés. Les tests sur les composites développés ont montré que ces matériaux ont des propriétés mécaniques remarquables, notamment une résistance à la flexion et à la compression ainsi qu’une absorption d'eau minimale. D’autre part, nous avons conclus que l’ajout des fibres (végétale ou minérale) améliore d’une façon significative les performances des composites. Cette étude confirme la contribution à la valorisation des sables de dunes et des déchets plastiques dans l'industrie du bétons polymères.Item Open Access Étude des propriétés thermiques et mécaniques des matériaux de construction.(Université Mohamed Boudiaf - M'sila, 2025-01-14) Chouidira Mohamed; enca/Ihaddadene NabilaLe secteur de la construction est un contributeur majeur au réchauffement climatique en raison de sa forte consommation énergétique et de l'épuisement des ressources naturelles. Cette étude vise à améliorer la performance environnementale des bâtiments en analysant les propriétés thermiques et mécaniques des matériaux de construction traditionnels et modernes tels que l'argile, la pierre et la brique. Des tests en laboratoire et sur le terrain ont été réalisés pour évaluer ces matériaux. Les résultats ont permis de classer les matériaux en fonction de leurs performances thermiques et mécaniques. Parallèlement, de nouveaux dispositifs et logiciels ont été développés pour améliorer l'efficacité de l'étude et ont fait l'objet de demandes de brevet. L'étude démontre la possibilité de réduire l'empreinte carbone du secteur de la construction grâce à un choix judicieux des matériaux. Les innovations proposées offrent des solutions concrètes pour construire des bâtiments plus durables et moins énergivores. Cette étude contribue grandement à la transition vers un secteur de la construction plus respectueux de l'environnement. Elle souligne l'importance d'évaluer les matériaux de construction de manière approfondie pour sélectionner ceux qui offrent les meilleures performances thermiques et environnementales. I AbstractItem Open Access INFLUENCE DES CONDITIONS CLIMATIQUES SUR LA PERFORMANCE DES PANNEAUX PHOTOVOLTAIQUES(Université Mohamed Boudiaf – M’sila, 2025-01-07) Samir TABET; ENCA/Ihaddadene RazikaCette thèse présente l'impact des facteurs techniques et environnementaux sur les performances des systèmes photovoltaïques. Dans les zones arides, les conditions extrêmes accélèrent la détérioration des panneaux solaires, notamment en raison de l'accumulation de poussière, qui réduit leur efficacité. L'étude se concentre sur l'effet de cette accumulation de poussière dans les environnements désertiques, en particulier à Bordj Bou Arréridj, en Algérie. Les analyses I-V et P-V ainsi que la simulation numérique ont permis d'évaluer les paramètres des panneaux et leur dégradation due à la poussière. Les conditions météorologiques, telles que le rayonnement solaire et la température, influent également sur la durabilité des panneaux. Une nouvelle méthode d'identification des panneaux endommagés a été développée pour estimer la dégradation des paramètres critiques, Cette étude examine la dégradation d'un panneau photovoltaïque en silicium polycristallin, exposé aux conditions extérieures pendant quatre ans dans le climat aride de Biskra, en Algérie. Pour évaluer les performances du module PV testé, deux techniques de caractérisation ont été utilisées : la caractérisation I-V et P-V ainsi qu'une inspection visuelle. Dans des conditions normales, un nouveau modèle a été développé pour déterminer les cinq critères (a, Rs, Rp, I0 et Iph) en utilisant la méthode d'ajustement de courbe. Ce modèle a été ajusté pour tenir compte des panneaux avec et sans dégradation. En estimant la dégradation de ces paramètres, une nouvelle méthode d'identification des panneaux endommagés a été présentéeItem Open Access Contribution to the dynamic study of a rotor by finite elements(University Mohamed Boudiaf-M’sila, 2025-01-07) AIMEUR Noureddine; ENCA/Noureddine MenasriRotor dynamics is an important aspect of the design or analysis of any type of rotating machine, as various types of vibrations appear in this mechanical system when the rotor is turned on, which can limit performance or easily lead to disaster. Therefore, the dynamic analysis of the rotor is necessary to ensure proper operation by providing accurate knowledge of the vibration behavior of the rotor system. In this study, scientific techniques for modeling and simulating the vibrations of a rotating system are presented. The equations of vibration motion of the rotor are determined using the Lagrange energy method. The centrifugal fan installed at the cement factory was selected to be of the FN280 type, equipped with a single wheel with blades mounted on the shaft supported by two bearings. Due to the fact that the manual solution of the equations of motion characterizing the dynamic analysis is considered a difficult task, the dynamic analysis of the cement fan FN280 using the finite element method was performed by the code ANSYS. The various components of the fan are designed using SolidWorks, except for the blade. Due to the lack of design data for it, we resorted to reverse engineering technology, which is also called reverse design. To obtain a 3D model of the blade, we used a CMM machine to scan the blade, and the fan was assembled and a dynamic analysis of the rotor was performed using the ANSYS Workbench. We determined the natural frequencies, extracted the critical speed by means of the Campbell diagram and mode shapes, and also studied the effect of the worn blades on dynamic behavior. In addition, a harmonic response analysis was performed in both cases. FSI simulation was also applied to the fan to estimate the loads resulting from unsteady flow. This simulation process is carried out using the ANSYS Workbench, which integrates flow simulation and transient analysis simulation using a one-way coupling approach. This approach was chosen because there is very weak interaction between the structural domain and the fluid. The purpose of this simulation is to verify the ability to make a preliminary estimate of the fatigue limit and the effect of pressure loads applied to the structure resulting from unsteady flow on the life of the fan. Results showed that air loads have a negligible effect on fan life.Item Open Access Study of turbulent flow through a fan(Mohamed Boudiaf University - M’sila, 2025-01-07) AMOUR Aissa; ENCA/MENASRI NoureddineParticle-laden flows are crucial for specific industrial applications but can have undesirable consequences, especially in industries like cement manufacturing that heavily rely on centrifugal fans. Operating under demanding conditions with a notable load of erodent solid particles poses challenges for these fans. Despite their widespread use, erosion in various fan types remains insufficiently explored. This thesis focuses on investigating the erosion process of an induced cement mill fan (FN-280). In pursuit of this objective, Unsteady three-dimensional numerical simulations using the Eulerian- Lagrangian approach were conducted to predict the fan’s aerodynamic characteristics and particle dispersion. Results are compared with experimental data and on-site inspections to assess the simulation’s effectiveness in predicting the fan’s performance and erosion patterns. Additionally, a thesis section examines how altering the number of blades and the blade’s outlet angle affects overall performance and erosion patterns. The numerical fan’s performance curve closely aligns with experimental data, validating the model’s reliability. Findings underscore the model’s ability to accurately replicate actual erosion patterns, emphasizing the substantial influence of particle size, flow conditions, and particle load on patterns and erosion rates. It is shown that increasing the blade outlet angle significantly intensifies erosion on the blade’s pressure side, with the primary factor driving higher erosion rates being the interplay between particle impact angle and frequency. Adjusting the blade count has minimal impact on erosion patterns on the blade pressure side compared to changing the blade outlet angle, but a noticeable trend emerges with fewer blades, resulting in more pronounced erosion rates. This is suggested to be attributed to the higher local impact frequency on blades featuring fewer blades.Item Open Access Numerical and Experimental study of a bio composite material reinforced with lignocellulosic fibers(Mohamed Boudiaf University - M’sila, 2025-01-07) SAADA Khalissa; enca/Zaoui MoussaItem Open Access Contribution à l’étude de la thermique des bâtiments en Algérie(University of M'sila, 2025-12-19) HADJI Feres; enca/IHADDADENE NabilaAujourd‟hui, notre société doit faire face à deux enjeux majeurs pour ce siècle : l‟épuisement progressif des combustibles fossiles (carbone, pétrole, gaz et charbon), qui fournissent actuellement plus de 80 % des énergies primaires commercialisées à l‟échelle mondiale, et le changement climatique. Qui représentent par les émissions de gaz à effet de serre qui ont été identifiés comme la principale cause du réchauffement climatique au cours des cinquante dernières années, et il y a eu une préoccupation croissante à ce sujet. Les bâtiments représentent 40 à 45 % de la consommation d‟énergie en Europe et en Chine (et environ 30 à 40 % à l‟échelle mondiale). La majeure partie de cette énergie est destinée à la fourniture d‟énergie pour l‟éclairage, le chauffage, le refroidissement et la ventilation.Le secteur du bâtiment en Algérie consomme 34% de la consommation énergétique finale totale du pays. Il est le plus grand consommateur d‟électricité du pays Ce travail vise à contribuer à la réduction de la consommation d‟énergie et atteindre le confort thermique à l‟intérieur du bâtiment; première voie par estimsting énergie solaire et montrer une manière différente de l‟intégrer dans le bâtiment deuxième voie en étudiant deux échantillons de sol utilisés dans la construction ancienne et de comprendre la meilleure conductivité thermique en ajoutant de la paille qui est bon marché, matériel local disponibleItem Open Access Exploitation de l’Energie Solaire à M’Sila(University of M'sila, 2024-10-09) BOUCHAREB Khaled; enca/IHADDADENE NabilaIn the field of green electricity generation, parabolic trough concentrated solar power technology is acknowledged as one of the most efficient and practicable options. In the first part of this thesis, we studied the viability of building a Concentrating Solar Power plant (CSP) using parabolic trough technology, like the Andasol-1 power plant in southern Spain in the M'Sila region of northern Algeria, through the System Advisor Model (SAM) software. The reference plant has a capacity of 50 MW and contains thermal energy storage (TES) technology. The results showed that when the Andasol-1 plant is installed in M'Sila, it produces electricity all year round from 11h00 a.m. to 17h00, with an average power of between 25 MWe and 50 MWe. When combined, the variables DNI, temperature, and relative humidity account for 98.2 % of the variance in electricity production in M’Sila. The climatic conditions of M’Sila make it favorable to install a CSP plant similar to Andasol-1 since it can produce 177.22 GWh of electricity annually at the M'Sila location. Furthermore, in the second part, the design, analysis and optimization of the performances of a CSP plant based on PTC technology with a capacity of 100 MW equipped with a TES system were carried out, in two sites representatives in Algeria (Tamanrasset and M'Sila). The results of the performance analysis conducted on the optimized design showed that the optimal values of the solar multiple (SM) and full load hours (FLH) of the TES system for the proposed power plant at the M'Sila site are found to be 3 and 7 hours, respectively, with an annual electricity production of 451.84 GWh and a low levelized cost of electricity (LCOE) value of 7.8¢/kWh. The study concluded that the M'Sila site provided encouraging results regarding the deployment of CSP plants integrating PTC technology. M'Sila can reduce demand on its thermal power plant, particularly during summer, by deploying CSP plants with parabolic trough collector technology, which can significantly contribute to the production of clean and sustainable electricity in the long term.