Permanent magnet shaping for cogging torque and torque ripple reduction of PMSM
Loading...
Date
2018-05
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Purpose – This paper aims to the improvement of permanent magnet shape in the popular permanent
magnet synchronous machine (PMSM) is proposed in this paper in view to mitigate cogging torque
magnitude and torque ripple.
Design/methodology/approach – A two-dimensional exact analytical approach of magnetic field
distribution is established for the PMSM considering magnet shape and slot opening. The optimal
magnet shape is constituted of small number of layers stacked radially. The thickness of each magnet
layer is considered equal to about one mm or more; however, a parametric study was performed to
determine pole pitch ratio value. The finite element method is used to validate the analytical results.
Findings – Cogging torque peaks and torque ripples can be mitigated significantly more than 90 per
cent compared to results issued from machine having classical magnet shape. Raising the number of
magnet layers can give better results. The results of this paper are compared also with those issued
from the machine having sinusoidal magnet shape and give a good solution.
Originality/value – A new technique for cogging torque and torque ripple mitigation is proposed in this
paper by changing permanent magnet shape. The proposed final magnet shape is constituted of a set of
stacked and well-dimensioned layers relative to the opening angle
Description
Keywords
Finite element analysis, Cogging torque, Analytical solution, Permanent magnet shaping, Torque ripples Paper type Research paper