Permanent magnet shaping for cogging torque and torque ripple reduction of PMSM

dc.contributor.authorBrahim Ladghem, Chikouche
dc.contributor.authorKamel, Boughrara
dc.contributor.authorRachid, Ibtiouen
dc.date.accessioned2020-10-26T09:27:27Z
dc.date.available2020-10-26T09:27:27Z
dc.date.issued2018-05
dc.description.abstractPurpose – This paper aims to the improvement of permanent magnet shape in the popular permanent magnet synchronous machine (PMSM) is proposed in this paper in view to mitigate cogging torque magnitude and torque ripple. Design/methodology/approach – A two-dimensional exact analytical approach of magnetic field distribution is established for the PMSM considering magnet shape and slot opening. The optimal magnet shape is constituted of small number of layers stacked radially. The thickness of each magnet layer is considered equal to about one mm or more; however, a parametric study was performed to determine pole pitch ratio value. The finite element method is used to validate the analytical results. Findings – Cogging torque peaks and torque ripples can be mitigated significantly more than 90 per cent compared to results issued from machine having classical magnet shape. Raising the number of magnet layers can give better results. The results of this paper are compared also with those issued from the machine having sinusoidal magnet shape and give a good solution. Originality/value – A new technique for cogging torque and torque ripple mitigation is proposed in this paper by changing permanent magnet shape. The proposed final magnet shape is constituted of a set of stacked and well-dimensioned layers relative to the opening angleen_US
dc.identifier.urihttp://dspace.univ-msila.dz:8080//xmlui/handle/123456789/20057
dc.subjectFinite element analysis, Cogging torque, Analytical solution, Permanent magnet shaping, Torque ripples Paper type Research paperen_US
dc.titlePermanent magnet shaping for cogging torque and torque ripple reduction of PMSMen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
article1.pdf
Size:
2.11 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections