Computer Vision-Based Age, Gender, Ethnicity Recognition

dc.contributor.authorDoucene, Salah Eddine
dc.contributor.authorZehani, Mohamed Hached
dc.contributor.authorGhemougui, Abdessattar: Reporter
dc.date.accessioned2024-06-30T13:46:36Z
dc.date.available2024-06-30T13:46:36Z
dc.date.issued2024-06-12
dc.description.abstractAge, gender, and ethnicity recognition technology analyzes faces using computer vision, but accuracy can be impacted by lighting, pose, and image quality. This report investigates existing methods, trains deep models similar to VGG/ResNet architectures and a pre-trained model from SkillCate, then evaluates and discusses the results. It aims to improve recognition accuracy despite these challenges.
dc.identifier.urihttps://repository.univ-msila.dz/handle/123456789/42917
dc.language.isoen
dc.publisherUNIVERSITY OF MOHAMED BOUDIAF – M’SILA, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, DEPARTMENT OF COMPUTER SCIENCE
dc.subjectHUMANITIES and RELIGION::Languages and linguistics::Scandinavian languages::Norwegian language
dc.subjectGender and Ethnicity Recognition
dc.subjectComputer Vision
dc.titleComputer Vision-Based Age, Gender, Ethnicity Recognition
dc.typeThesis

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
مذكرة ماستر دوسن صلاح الدين+ زهاني محمد حشاد.pdf
Size:
2.98 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections